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Abstract: We numerically show that it is possible to achieve adiabatic 
compression of femtosecond quadratic solitons in aperiodically poled 
lithium niobate device. Two-colored solitons of the fundamental wavelength 
of 1560 nm can be adiabatically shaped by using group-velocity matching 
schemes available in quasi-phase-matching (QPM) devices. We investigate 
the performance of the adiabatic compression based on two different group-
velocity matching schemes: type-I (e: o + o) collinear QPM geometry and 
type-0 (e: e + e) non-collinear QPM geometry. Two-colored temporal 
solitons with pulse duration of 35 fs are generated without visible pedestals 
from 100-fs fundamental pulse. We also show that walking solitons with 
shorter pulse durations are adiabatically excited under small group-velocity 
mismatch condition. The walking solitons experience deceleration or 
acceleration during compression, depending on the sign of the group-
velocity-mismatch. The demonstrated adiabatic pulse shaping is useful for 
generation of shorter pulses with clean temporal profiles, efficient 
femtosecond second harmonic generation and group-velocity control. 
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1. Introduction 

Quadratic solitons, which are formed by mutual trapping of multiple-frequency components 
through cascaded quadratic nonlinearities, have been studied extensively because of their 
unique physical properties [1-4]. Typical geometry is the phase-mismatched second-harmonic 
generation (SHG), where the phases and the amplitudes of fundamental (FF) and second-
harmonic (SH) waves are modulated through the continuous exchange of the energy between 
them. Families of quadratic soliton exist and are stable at various phase mismatch values [5-6]. 
The energy ratio of FF and SH waves as well as their beam widths are dependent on the phase 
mismatch and the total energy that they carry. Quadratic solitons in the space domain have 
been demonstrated in birefringently phase-matched crystals [7, 8] and in quasi-phase-
matching (QPM) devices, such as periodically poled lithium niobate (PPLN) [9] and 
periodically poled KTiOPO4 (PPKTP) [10]. Torner et al. [11] proposed the idea to 
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adiabatically shape the quadratic solitons to different beam profiles and widths or different 
fractions of energy carried by the SH wave. The shaping mechanism is based on soliton 
generation and propagation in chirped QPM gratings. The main advantage of this adiabatic 
shaping approach is that most of the energy incident as fundamental wave remains contained 
inside the two-color solitons. Carrasco et al. [12] theoretically showed that the efficiency and 
the mismatch bandwidth of quadratic soliton formation can be enhanced in synthetic phase-
mismatching profiles. Excitation of spatial soliton families has been demonstrated in an 
engineered QPM lithium niobate waveguide so far [13]. 

Although the governing equations for spatial solitons and temporal solitons are similar, the 
realization of temporal solitons or soliton pulse compression is not straightforward. The main 
obstacle is the group-velocity (GV) mismatch between FF and SH, which is usually 
encountered in the experiment. The GV mismatch tends to distort the cascaded nonlinearities 
and prevent the pulses from forming solitons. One way to avoid the phase distortions is to 
operate the cascaded nonlinearities under large phase-mismatch condition, where the back-
conversion length is less than the GV-mismatch length [14]. By using the self-defocusing 
nonlinearity at the large phase mismatch in beta-barium borate (BBO) and the material normal 
dispersion, pulse compression of fundamental pulses, centered at 800 nm, was demonstrated 
[15, 16]. The non-instantaneous feature of the cascading nonlinear phase shifts, caused by GV 
mismatch, has been highlighted as Raman-like nonlinearities [17]. It is shown that the Raman-
like nonlinearities work for frequency shift and such shift is enhanced by the local control of 
the cascaded nonlinearities. Here the chirped QPM grating was used to keep the net phase 
mismatch constant along propagation and to avoid the saturation of the frequency shift. 
Recently, significant improvement has been made to this type of cascading pulse compressor: 
fundamental pulses are compressed down to few-cycle (12 fs) [18].  

Large phase mismatch approach reduces the phase distortions, but it does so at the expense 
of nonlinearity. Moreover, the energy content in SH pulse is limited to be small. In contrast, 
GV matching between the interacting waves, if it is possible, allows us to operate the 
cascaded nonlinearities under small phase-mismatch condition without severe phase 
distortions. Therefore the cascaded nonlinearities of ultrashort pulses can be significantly 
enhanced and multi-color temporal solitons can be generated. The multicolored nature is one 
of the unique features of quadratic solitons. Simultaneously compressed FF and SH pulses of 
35fs duration have been generated through GV matched cascaded quadratic nonlinearities [19]. 
Here type-I SHG geometry (e: o + o) in 10-mm MgO-doped periodically poled lithium 
niobate (PPMgLN) was used to achieve GV matching. The compression mechanism is based 
on the interplay between amplitude/phase modulation due to cascaded nonlinearities and the 
material dispersion of the PPMgLN. This non-adiabatic process is inherently accompanied by 
the large pedestals in the compressed pulses. 

In this paper, we show that the pulse quality of the compressed FF and SH pulses can be 
significantly improved by adiabatically exciting the solitons in the chirped QPM gratings. We 
present the experimentally realistic setup for the adiabatic compression of two-colored pulses 
and confirm its performance by numerical simulations. Two different GV-matching (or GV-
mismatch compensation) schemes available in QPM devices are exploited to implement the 
adiabatic compression at the fundamental wavelength of 1560 nm. One scheme involves 
achieving GV matching by using an off-diagonal nonlinear coefficient d32 (Type-I: e: o + o) in 
PPMgLN [20]. In the other scheme, the intrinsic GV mismatch is compensated for by using 
pulse-front tilting and noncollinear QPM (Type-0: e: e + e) [21]. In contrast to ref. [17], 
chirped QPM grating is used to let temporal solitons adiabatically adapt themselves to the 
local wave-vector mismatch in this paper. We compare pulse compression performance 
between two different GV-matching schemes and show their capabilities and limitations from 
a practical standpoint. The demonstrated two-colored soliton consists of FF and SH pulses, 
which are inherently pedestal-free and mutually trapped in time. These properties can be 
beneficial for applications in optical information processing or in light-matter control. 
Different from the pulse compression achieved by using large phase-mismatch [15-18], the 
GV-matched adiabatic scheme generates relatively large amount of SH energy. This points to 
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the application as an efficient SHG, where the compressed SH pulses with high quality factor 
are generated.  

This paper is organized as follows. The concept of adiabatic soliton compression in QPM 
gratings is described in Sec. 2. Numerical results of the soliton compression based on the 
linearly chirped poled MgO-doped LiNbO3 (MgO: LN) geometry (Type-I) are presented in 
Sec. 3. Numerical results of another GV-mismatch compensation based on the noncollinear 
QPM (Type-0) geometry are presented in Sec. 4. In Sec.5, we study the tolerance of adiabatic 
shaping to GV mismatch: the generation of quadratic walking solitons under the small GV 
mismatch condition is discussed. Here we observe deceleration or acceleration of quadratic 
walking solitons. Finally, we conclude this paper in Sec. 6.  

2. Adiabatic soliton compression in QPM grating 

The adiabatic compression technique was first presented in dispersion-decreasing optical 
fibers [22]. The fundamental soliton is maintained by the interplay between self-phase 
modulation (SPM) and anomalous group velocity dispersion (GVD). If this balance is 
perturbed by slowly decreasing the GVD of the fiber along the propagation direction, the 
soliton does not break down and adiabatically adjusts its pulse width owning to its stability. 
Then, the maximum compression factor is determined by the ratio of input to output GVD.  

Quadratic solitons exist at different values of wave-vector mismatch, but their properties 
(energy ratio and shapes of FF and SH) are significantly different depending on the mismatch 
and the total energy. Chirped QPM yields the longitudinally varying wave-vector mismatch. If 
pulses are launched into the chirped QPM, the solitons adapt themselves adiabatically to the 
local wave-vector mismatch [11]. This ability originates from the stability, which is one of the 
fascinating properties of quadratic solitons. In fact, dynamic evolution of quadratic solitons 
can tolerate weak perturbations of the QPM period [23]. If we design the longitudinal 
distribution of the wave-vector mismatch properly, the SH pulses carry more energy and both 
FF and SH pulses have shorter pulse duration at the exit of the device, compared with the 
pulse duration at the entrance. 

 
Fig. 1. Schematic of adiabatic compression process in the aperiodic QPM grating. The effective 
wave-vector mismatch Δk(z)=k2-2k1-2π/Λ(z) varies along the propagation direction. 

 
A simple schematic diagram of adiabatic compression is shown in Fig. 1. The effective 

wave-vector mismatch between FF and SH waves, Δk(z)=k2-2k1-2π/Λ(z), is determined by the 
local domain reversal period Λ(z) and the FF and SH wave numbers, k1 and k2. Here, we 
consider a chirped QPM grating, where the local effective wave-vector mismatch 
longitudinally changes and approaches the phase matching condition. FF and SH pulses will 
dynamically adapt themselves to the soliton solutions for the local wave-vector mismatch. The 
local wave-vector mismatch should change slowly enough that pulses can adiabatically evolve 
to proper solitons at each position. Finally, both FF and SH pulses adiabatically evolve into 
soliton pulses with shorter pulse durations.  

3. Soliton compression based on collinear QPM geometry 

Owning to the unique material dispersion of 5 mol% MgO: LN, GV matching for SHG in the 
type-I geometry (e: o + o) occurs at the fundamental wavelength of 1560 nm [20]. We 
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investigate adiabatic soliton compression, which can be implemented in the type-I SHG 
geometry in the continuously chirped QPM grating. The QPM period Λ(z) used in our 
simulation varies from 19.98 μm to 20.40 μm (Δk: 8.15 mm-1 to 0.41 mm-1) with a simple 
linear chirp (see Fig. 2). The grating length is 100 mm, which corresponds to 3.3 times the 
dispersion length of a 100-fs pulse (FF). The coupled wave equations governing the 
propagation of the FF and SH waves under the slowly varying envelope approximation can be 
generalized as [24]: 

( ) ( )

( ) ( )

2 2'' 2 *
1 1 1 1 1 2 0 1 1 1 2 1

2 2'' 2
2 2 2 2 1 1 0 2 2 2 1 2

2 ( ) exp 2

2 ( ) exp 2

z tt

z tt

E i k E i z E E i k z i E E E E

E i k E i z E E i k z i E E E E

ρ σ

ρ σ

⎡ ⎤∂ + ∂ = Δ + +
⎣ ⎦

⎡ ⎤∂ + ∂ = − Δ + +
⎣ ⎦

   (1) 

where ρi(z) = ωid32d(z)/cni  and σi = 3ωiχ(3)/8cni. Ei (z, t) denotes the amplitude of the electric 
field, and the subscripts 1 and 2 correspond to FF and SH pulses, respectively. Time t is 
measured in a frame of reference along with FF propagation. Group velocity dispersion ki″= 
d2ki /d

2ω and the material wave-vector mismatch Δk0= k2 - 2k1 are derived from Sellmeier’s 
equation for MgO: LN [25]. It is noted that d(z) is the normalized distribution of second-order 
nonlinearity along the aperiodic QPM grating. The input FF is a transform-limited pulse with 
a full-width at half-maximum (FWHM) duration of 100 fs (peak intensity: 20 GW/cm2) at the 
wavelength of 1560 nm. Numerical simulation is carried out to solve Eq. (1) with a symmetric 
split-step beam-propagation method (BPM). 

 
Fig. 2. Normalized energy ratio of FF and SH along the linearly chirped QPM grating. The 
effective wave-vector mismatch Δk(z) varies from 8.15 mm-1 to 0.41 mm-1. Input FF: 
transform-limited pulse (100 fs, 20 GW/cm-2) at the wavelength of 1560 nm; 

 
The energy carried by the FF pulse is gradually transferred to the SH pulse, as shown in 

Fig. 2. What is usually encountered in experiments is that only FF pulse is input. The total 
energy is dominated by FF at the large wave-vector mismatch in the quadratic solitons. If 
larger wave-vector mismatch at the input is used, the launched FF pulse can be easily 
transformed to the quadratic soliton solution. After a rather short transition period of less than 
10 mm (see Fig. 2), the oscillating energy exchange stops, and two-color solitons are formed. 
The mechanism of adiabatic soliton compression in chirped QPM grating is to allow quadratic 
solitons to adapt themselves to soliton families at the local wave mismatch [11]. The temporal 
profiles and energy fractions of output FF and SH are determined by the local effective wave- 
vector mismatch at the end of grating.  
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Figures 3(a)-3(b) show the intensity and phase profiles of input and output compressed FF 
and SH pulses in the chirped QPM grating. Here we see that the compressed temporal profiles 
show high-quality soliton-like shapes without obvious pedestals. Both FF and SH pulses are 
compressed to about 35 fs. The evolutions of the FF and SH pulse duration in the linearly 
chirped are plotted in Fig. 3(c). In adiabatic pulse shaping, the pulses tend to approach the 
solitary wave solutions, depending on the net nonlinearity including cascaded and cubic 
(third-order) nonlinearity at each position. Therefore the shortest pulse duration is determined 
by the input energy and the magnitude of nonlinearity. According to the numerical 
simulations including the cubic nonlinearity, the compressed pulse duration is 35 fs for the 
input fundamental pulses of 100 fs duration (peak intensity: 20 GW/cm2),  as shown in Fig. 3. 
If we neglect the cubic nonlinear term, the compressed pulse duration becomes 25 fs. This 
means that the cubic nonlinearity counteracts the cascading self-defocusing nonlinearity and 
reduces the net nonlinearity. This trend becomes enhanced at higher intensity, because 
cascaded nonlinearity saturates with intensity. In fact, even if we increase the input peak 
intensity to be much more than 20 GW/cm2, the compressed pulse duration decreases only 
down to 30 fs. Therefore, the shortest pulse duration is ~30 fs, mainly limited by the 
competition between cascaded second-order and cubic nonlinearity. 

 
Fig. 3. Intensity profiles of the compressed (a) FF and (b) SH pulses in linearly chirped grating 
(100 mm, solid line) and periodic grating (10 mm, dashed line) at  Δk = 0.35 mm-1. Phase 
profiles of the compressed (a) FF and (b) SH pulses for linearly chirped grating are also shown, 
as well as evolution of the pulse duration of the FF and SH pulses for (c) linearly chirped and 
(d) periodic QPM gratings.  

 
Soliton compression in the periodic QPM structure is also investigated for comparison. It 

is numerically proved that at smaller (larger) Δk, the compressed pulses have shorter (longer) 
pulse duration with larger (smaller) pedestal. The effective wave-vector mismatch Δk is set to 
be 0.35 mm-1 for periodic QPM grating, which gives the same compression factor as the 
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adiabatic scheme. Then we can compare the performance as a compressor by the difference in 
pulse quality. Here self-defocusing nonlinearity is induced by the cascaded processes. The 
optimum propagation length (10 mm) for the maximum compression factor is taken after the 
initial compress stage, which is denoted by a black arrow in Fig. 3(d). After initial compress 
stage, FF and SH have same dynamic behavior. From the results in Figs. 3(a)-3(b), the output 
FF and SH pulses are compressed by a factor of about 3, but the pulse quality is degraded: the 
main spike is accompanied by a broad pedestal in both FF and SH pulses. From Fig. 3(d), FF 
and SH pulses experience several stretch and compression phases during the initial 
compression stage.  

 
Fig. 4. Quality factors of the linearly chirped and periodic QPM gratings as a function of 
propagation length 

 
We also evaluate the quality of the compressed pulses. The pulse shapes of quadratic 

solitons are different along the effective wave-vector mismatch Δk, but they are very close to 
the hyperbolic-secant or Gaussian functions. In simple terms, a sech2 (t) function is used to fit 
the central part of the FF and SH pulses at each position. In this paper, the term quality factor 
is defined as the fractional amount of energy carried by the central spike of the FF and SH 
pulses, normalized by the launched energy. Figure 4 shows the quality factor as a function of 
propagation distance in the linearly chirped QPM grating (solid line). We can see that the 
quality factor is around 1 during propagation. This means that two-color (FF and SH) solitons 
show strong robustness and adapt to slight variations of Δk by reshaping their profiles. We 
note that the quality factor is larger than 1 at several regions due to mathematical artifacts, i.e., 
an intensity profile having a super-Gaussian shape will produce a quality factor larger than 1. 
Figs. 5(a)-5(b) show the evolutions of FF and SH pulses in the linearly chirped 100-mm QPM 
grating. No obvious energy leakage is visible. In contrast, the quality factor becomes as low as 
0.6 in the periodic QPM grating (dash line in Fig. 4). The main lobe of FF and SH splits into a 
multi-peaked structure and a large part of the launched energy flows away in the form of a 
broad continuum, as shown in Figs. 5(c)-5(d).  
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Fig. 5. Evolution of FF and SH pulses. (a) FF and (b) SH pulses in linearly chirped QPM; (c) 
FF and (d) SH pulses in periodic QPM at Δk= 0.35 mm-1.  

 
From the discussions above, non-adiabatic compression in periodic QPM grating shows 

stronger compression ability than adiabatic soliton compression. However, the outstanding 
advantages of adiabatic soliton compression are (1) good quality of compressed pulses, (2) 
relatively large amount of energy in SH, (3) well-controlled timing (or time-coincidence) 
between the output FF and SH pulses. If one is interested in SH pulses, the adiabatic process 
can be seen as high-efficiency SHG process, accompanied by pulse compression. The timing-
locked two-colored pulses may have new applications in optical information processing or in 
light-matter control. This approach is straightforward to implement pulse compression and 
can be extended in the waveguide structure, which is a promising application for pulse 
compression of mode-locked erbium-glass lasers. 

4. Soliton compression in noncollinear QPM geometry 

Achromatic phase-matching (APM) for SHG in birefringently phase-matched crystals [27] 
can compensate for GV mismatch between the FF and SH waves. This technique was utilized 
for the formation of χ (2) temporal solitons in BBO crystal [28]. In addition, use of the APM 
technique for SHG based on QPM was proposed [21] and experimentally demonstrated [29, 
30]. We will apply this scheme to achieving adiabatic soliton compression in the chirped 
QPM grating.  

Let us first review GV-mismatch compensation in a noncollinear SHG geometry. The 
configuration is almost the same as that shown in Fig. 6(a) except that periodic QPM grating 
is used for a simple SHG. If spectral angular dispersion is properly introduced to the FF and 
SH waves, different spectral components propagate at their phase matching angles and the 
SHG bandwidth is broadened. This is equivalent to canceling the GV mismatch in the time 
domain. Spectral angular dispersion manifests itself as pulse-front tilting. When an 
appropriate angle of pulse-front tilting is introduced, the pulse fronts of the FF and SH waves 
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remain overlapped and in parallel as they propagate in the time domain; that is, the 
components of group velocities normal to the pulse front have the same velocity. The 
effective GV mismatch is also controllable by detuning from the GV-mismatch compensation 
condition. 

 
Fig. 6. (a). Schematic of SHG interactions in aperiodic noncollinear QPM grating and (b) the 

corresponding wave-vector diagram; Δk = k2z-2k1-Kp is the effective wave-vector mismatch; 
α, β and ρ are the propagation angle with respect to the grating vector K, the walk off angle, 
and the pulse front tilt angle ρ. 

 
Here congruent lithium niobate is considered for the type-0 (e: e + e) QPM gratings, and 

the material parameters are taken from Sellmeier’s equation [31]. Under the condition of 
quasi-phase matching in the noncollinear QPM geometry, the walk-off angle β depends on the 
QPM grating vector K = 2π/Λ , which is always longer than grating vector in collinear QPM 
grating, i.e. Λ < Λ0. That is, the walk-off angle β (or the QPM period Λ) is a free parameter in 
the noncollinear QPM geometry. We express this freedom by a parameter R = Λ/Λ0 (0 < R < 
1), where Λ0 is the QPM period of the collinear geometry. Once R is chosen, (1) the 
propagation angle α with respect to the grating vector K and the walk-off angle β are 
determined to satisfy the noncollinear QPM condition, and (2) the pulse-front tilt angle ρ is 
determined for GV mismatch compensation. For example, when R is 0.3 (Λ = 5.61 μm), the 
achromatic QPM condition at the fundamental wavelength of 1560 nm requires α, β, and ρ to 
be 74.3º, 3.5º and 36.5º, respectively. FF is required to have a suitable pulse-front tilt before 
entering the QPM grating and the suitable spectral angular dispersion is necessary to 
compensate for the pulse-front tilt of output FF and SH, respectively.  

Based on this knowledge, let us investigate adiabatic soliton compression based on the 
scheme of GV mismatch compensation, except chirped noncollinear QPM grating is used, as 
shown in Fig 6(a). The grating period is chirped along the direction of the grating vector K, 
while the propagation angle α is same with that (74.3º) in the periodic noncollinear QPM 
grating. The value of grating vector K is determined by the grating period along the coordinate 
zs (zs // K), which has same period with the grating period along the line zs = y sin(α) + z 
cos(α) in (y, z) coordinates. That is, grating vector K along this line is determined by K (zs). 
Therefore the grating vector K(y, z) can be expressed as two components [Kl (zs), Kp (zs)] in (y, 
z) coordinates. The first-order Fourier component of the nonlinear coefficient distribution is 
expressed as d(z, y) = 2/π d33 exp [iKp ⋅ z+ iKl ⋅ y]. The wave-vector diagram of noncollinear 
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SHG is shown in Fig. 6(b). The effective wave-vector mismatch Δk(z) = k2z - 2k1 - Kp is 
parallel to the z direction, where k2z and k2y represent the z and y components of k2. Δk (z) is 
designed to vary linearly from -40 mm-1 to 5 mm-1. Strictly speaking, GV mismatch 
compensation becomes imperfect as we introduce effective wave-vector mismatch. Such 
degradation of the GV-mismatch compensation, however, is too small to affect the nonlinear 
propagation, and therefore is not taken into account here.  

The coupled-wave equations governing the propagation of FF and SH in a noncollinear 
QPM configuration are given by [29]: 

( )

( )

2 2*
1 1 1 1 2 1 1 1 2 1

2 2

2 2 2 2 2 1 1 2 2 2 1 2

exp 2

exp 2t y

L E i E E i k z i E E E E

L E E E i E E i k z i E E E E

ρ σ

δ η ρ σ

⎡ ⎤= − Δ − +
⎣ ⎦

⎡ ⎤= − ⋅∂ − ⋅∂ − − Δ − +
⎣ ⎦

 (2) 

where ( )1 2 '' 2(2 ) 2i z i yy i ttL k k−⎡ ⎤= ∂ + ∂ − ∂⎣ ⎦ , ρi = 2ωid33 /πcni, δ = 1/ vg1- 1/ vg2 is temporal 

walk-off, vg1 and vg2 are the group velocities of the FF and SH pulses, and η = k2y/k2z. The 
standard (2 + 1)D (temporal, spatial plus propagation) coupled-wave equations are solved by 
using the 2D BPM method. 

The input FF pulse is transform-limited to 100-fs (FWHM) duration and 500-μm 
(FWHM) beam width, and the peak intensity is 20 GW/cm2. The grating length L is set to be 3 
mm, which is 3 times the effective dispersion length of the 100-fs duration pulse (FF). The 
effective GVD induced by the pulse-front tilting is given by [32]: 

 ( )
2

23 22eff

d
GVD c

d

αλ π
λ

−⎛ ⎞= − ⎜ ⎟
⎝ ⎠

,   (3) 

where c is the velocity of light in vacuum and dα/dλ is the spectral angular dispersion. The 
effective GVD is usually one order of magnitude larger than the intrinsic material GVD. 
Different from the type-I case, the self-focusing nonlinearity works for soliton formation, 
because the net dispersion is anomalous: the net dispersion is mainly governed by the 
anomalous dispersion induced by pulse-front tilt. Therefore the cubic nonlinearity supports 
the cascading (self-focusing) nonlinearity to work for compression. In principle, the 
compression factor increases with intensity. For example, the compressed pulse duration 
becomes 25 fs when the input peak intensity is 40 GW/cm2. However, the material damage 
threshold limits the highest input intensity.  

 
Fig. 7. Evolution of (a) normalized energy ratio and (b) pulse duration of FF (solid line) and 
SH (dashed line) pulses in the noncollinear QPM geometry from the results of 2D BPM (black 
lines) and 1D BPM (red lines). The effective wave-vector mismatch Δkz of the engineered 
QPM grating varies from -40 mm-1 to 5 mm-1 with a linear variation (R = 0.3).  
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Figures 7(a)-7(b) show typical results, which illustrate adiabatic compression process of 
the tilted pulses (black lines). Durations of the FF and SH pulses gradually decrease, and the 
SH pulse carries more energy as it propagates. The sets of numerical simulation confirm that 3 
mm grating length is long enough to achieve adiabatic soliton compression. It is noted that SH 
carries more energy than FF. Figure 8(a) shows temporal profiles at the spatial centre of the 
FF and SH pulses. The compressed FF (40 fs) and SH (35 fs) pulses are obtained without 
observable pedestals. The large effective anomalous GVD is responsible for the effectiveness 
of the shorter length in the noncollinear QPM grating, compared with the type-I QPM 
geometry (100 mm) in section 4. The larger nonlinearity coefficient d33 used in the type-0 
phase matching geometry makes the cascaded nonlinearity more efficient for soliton 
compression.  

  
Fig. 8. (a). Temporal profiles at the spatial centre and (b) time-integrated spatial profiles of FF 
(solid-black line) and SH (dashed-red line) pulses. Dotted-green lines indicate the input 
profiles. 

 
Figure 8(b) shows the time-integrated spatial profiles of the FF and SH pulses. The 

compressed pulses are pedestal-free obviously. Small asymmetry in the FF and SH spatial 
profiles is shown due to the spatial walk-off. The separation between FF and SH pulses can be 
characterized by the aperture length in the lateral direction, which is denoted as D = β L. The 
aperture length D is 180 μm after 3 mm propagation, which is much less than the 500 μm 
(FWHM) beam width. It is pointed out that spatial walk-off in the noncollinear interaction has 
less influence on the pulse compression if large-diameter beams are used. This means that 
spatial walk-off does not degrade the interaction between FF and SH pulses. To verify this 
point, we investigate the temporal behaviors without considering the spatial walk-off. The 
equations for this case are similar to Eq. (1) except that the GVD coefficients of FF and SH 
are modified by the effective anomalous GVD, which is induced by the pulse-front tilting. 
The normalized energy ratio and pulse duration of the FF and SH pulses are calculated by 
using a 1D BPM method (red lines), as shown in Figs. 7(a)-7(b) for comparison. The 
agreement between the results for 1D and 2D simulations is clearly shown, which 
demonstrates that spatial walk-off has little influence on the pulse compression. 

We conclude that a short grating length (3 mm) is sufficient to achieve adiabatic soliton 
compression in the scheme of GV-mismatch compensation based on the noncollinear 
aperiodic QPM geometry. The effect of spatial walk-off on the pulse compression is 
negligible if a beam larger than the aperture length is used. As compared with adiabatic 
soliton compression in type-I geometry, (1) the largest nonlinear coefficient d33 (Type-0: e: e 
+ e) can be used in this scheme; (2) Shorter gratings become available in noncollinear QPM 
grating due to the induced effective GVD from pulse-front tilting. Since GV-mismatching 
compensation in other wavelengths can be achieved in non-collinear QPM gratings, adiabatic 
soliton compression can be applied to a broad FF wavelength. This approach shows an 
efficient way to achieve adiabatic soliton compression in the bulk χ (2) media.   
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5. Adiabatic soliton compression under small GV mismatch 

It is also interesting to study the adiabatic process under small, but non-zero, GV-mismatch. It 
is known that in the presence of GV mismatch, FF and SH pulses mutually trap and drag each 
other and propagate with a velocity between the non-interacting FF and SH group velocities. 
The velocity of walking solitons is determined by the energy distribution between FF and SH 
pulses. GV control of ultrafast pulses was demonstrated through χ (2) cascaded interactions in 
QPM gratings [33]. The soliton content, or soliton generation efficiency, decreases as the 
phase mismatch decreases (or larger walk-off between FF and SH) when only FF is input in 
periodic QPM grating (i.e. non-adiabatic process) [34]. In the following simulations, we find 
that the adiabatic process in the chirped QPM grating can tolerate small GV mismatch.  

 
Fig. 9. Evolutions of normalized intensity profiles of (a) FF and (b) SH pulses in the presence 
of GV mismatch (δ=0.025). 

 
Walking solitons in the noncollinear type-0 QPM scheme are investigated. The effective 

GV mismatch is controlled by slightly detuning from the effective GV-matching condition. 
The grating length is chosen to be 10 mm in order to show clearly the change in the group 
velocity with propagation. Here δ is the GV mismatch normalized with the group velocity of 
the FF pulse. The normalized GV mismatch δ is positive if the effective GV of the FF pulse is 
smaller than that of the SH pulse.  

Figures 9(a)-9(b) show that walking solitons including FF and SH fields propagate with 
modified walking velocities relative to the non-interacting FF group velocity. The walking 
solitons decelerate with propagation because the energy carried by the SH pulse increases 
with propagation. Moreover, walking solitons can gradually accelerate if the effective GV 
mismatch δ < 0.  
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Fig. 10. Dependence of (a) FWHM of FF and SH and (b) quality factor and walking time on 
the normalized group velocity mismatch δ.  

 
Figure 10(a) shows the dependence of the FWHM of FF and SH pulses on the normalized 

GV mismatch δ, and Fig. 10(b) shows the dependence of the quality factor and walking time 
on the normalized GV mismatch δ  after 10 mm propagation. Here the walking time is defined 
as the temporal delay of the quadratic solitons relative to the reference frame of the non-
interacting FF group velocity. FF and SH pulses less than 40 fs in width are also compressed 
within δ < 0.025, while maintaining a high quality factor. If δ is larger than that, the FF pulse 
broadens and the SH pulse breaks into multi-peaks. The peaks of quadratic solitons are 
temporally delayed, and significant walking times are induced.  

These results clearly show that adiabatic soliton compression takes effect even in the 
presence of group velocity mismatch. The compression factor and quality factor are not 
degraded in the quadratic solitons under small GV mismatch (δ < 0.025) conditions. Walking 
solitons can gradually decelerate (accelerate) according to the sign of the effective GV 
mismatch. In the way, group velocities of quadratic solitons are controlled by using aperiodic 
QPM gratings. Adiabatic process with a small GV mismatch may serve as GV control scheme. 

6. Conclusions 

We investigate the practical approach to achieve adiabatic soliton compression of 
femtosecond pulses based on GV-matching in aperiodic collinear (type-I) QPM and GV–
mismatch compensation in noncollinear (type-0) QPM gratings. Quadratic temporal solitons 
with pulse duration less than 40 fs are generated without visible pedestals from 100-fs FF 
pulses at the center wavelength of 1560 nm. The demonstrated adiabatic pulse shaping 
schemes are very attractive because of their ability to efficiently generate two-color solitons 
with shorter pulse durations. These timing-locked two-colored pulses may have new 
applications in the optical information processing or in the light-matter control. Even in the 
presence of small GV mismatch, walking solitons are adiabatically compressed with the 
decelerated (accelerated) group velocities. These results point to the new application to the 
group-velocity control through adiabatic process. 
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